Epoch-based analysis of speech signals
نویسندگان
چکیده
Speech analysis is traditionally performed using short-time analysis to extract features in time and frequency domains. The window size for the analysis is fixed somewhat arbitrarily, mainly to account for the time varying vocal tract system during production. However, speech in its primary mode of excitation is produced due to impulse-like excitation in each glottal cycle. Anchoring the speech analysis around the glottal closure instants (epochs) yields significant benefits for speech analysis. Epoch-based analysis of speech helps not only to segment the speech signals based on speech production characteristics, but also helps in accurate analysis of speech. It enables extraction of important acoustic-phonetic features such as glottal vibrations, formants, instantaneous fundamental frequency, etc. Epoch sequence is useful to manipulate prosody in speech synthesis applications. Accurate estimation of epochs helps in characterizing voice quality features. Epoch extraction also helps in speech enhancement and multispeaker separation. In this tutorial article, the importance of epochs for speech analysis is discussed, and methods to extract the epoch information are reviewed. Applications of epoch extraction for some speech applications are demonstrated.
منابع مشابه
Analysis of laugh signals for detecting in continuous speech
Laughter is a nonverbal vocalization that occurs often in speech communication. Since laughter is produced by the speech production mechanism, spectral analysis methods are used mostly for the study of laughter acoustics. In this paper the significance of excitation features for discriminating laughter and speech is discussed. New features describing the excitation characteristics are used to a...
متن کاملکاربرد الگوریتم جداسازی کور منابع در جداسازی سیگنالهای گفتار و موسیقی
In this paper, the application of the Independent Component Analysis In this paper, the application of the Independent Component Analysis technique in speech-music separation is discussed. The separation algorithm is in the time domain. It needs the score function estimation to minimize the mutual information. For estimating score function, sufficient samples of the mixed (speech-music) signals...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملA New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)
Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...
متن کاملP65: Speech Recognition Based on Bbrain Signals by the Quantum Support Vector Machine for Inflammatory Patient ALS
People communicate with each other by exchanging verbal and visual expressions. However, paralyzed patients with various neurological diseases such as amyotrophic lateral sclerosis and cerebral ischemia have difficulties in daily communications because they cannot control their body voluntarily. In this context, brain-computer interface (BCI) has been studied as a tool of communication for thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011